Содержание тем учебного курса «Геометрия» 7 класс.

УМК по учебнику Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева

Начальные геометрические сведения (10 час.)

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Цель: систематизировать знания обучающихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений обучающихся путем обобщения очевидных или известных из курса математики I— 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.

Контрольная работа №1

Треугольники (17 час)

Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.

Цель: ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки.

Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников.

Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.

Контрольная работа №2

Параллельные прямые (13 час)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Цель: ввести одно из важнейших понятий - понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.

Контрольная работа №3

Соотношения между сторонами и углами треугольника(20 час)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки

равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Цель: рассмотреть новые интересные и важные свойства треугольников.

В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, и частности используется в задачах на построение.

При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.

Контрольная работа №4

Повторение. Решение задач.(8 час)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7 класса.

Содержание тем учебного курса «Геометрия» 8 класс.

УМК по учебнику Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева

1. Четырёхугольники (14ч)

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция. Осевая и центральная симметрии.

В результате изучения данной главы учащиеся должны:

Знать: определения рассматриваемых четырехугольников; формулировки и доказательства теорем, выражающих признаки и свойства этих четырехугольников; определения симметричных точек и фигур относительно прямой и точки.

Уметь: распознавать на рисунке и по определению четырехугольники; применять признаки в решении задач; строить симметричные точки и распознавать фигуры, обладающие осевой и центральной симметрией

2. Площади фигур (14ч)

Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности, формула Герона. Площадь четырехугольника. Теорема Пифагора

В результате изучения данной главы учащиеся должны:

Знать: основные свойства площади, формулы площади прямоугольника, параллелограмма, треугольника, трапеции; формулировки теоремы Пифагора и обратной к ней теоремы;

Уметь: применять их в решении задач.

3. Подобные треугольники (19ч)

Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

В результате изучения данной главы учащиеся должны:

Знать: определения пропорциональных отрезков, подобных треугольников, формулировки и доказательства теорем, выражающих признаки и свойства подобных треугольников; определения синуса, косинуса, тангенса острого угла прямоугольного треугольника;

Уметь: воспроизводить доказательства признаков подобия треугольников, доказывать основное тригонометрическое тождество, применять их в решении задач.

4. Окружность (17ч)

Центр, радиус, диаметр. Дуга, хорда. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника.

В результате изучения данной главы учащиеся должны:

Знать: случаи расположения прямой и окружности; определение, свойство и признак касательной; определения центрального, вписанного углов, теорему о вписанном угле и следствия из нее; какая окружность называется вписанной, описанной, теоремы о свойствах окружностей.

Уметь: доказывать и применять их в решении задач. **5. Повторение. Решение задач (4 ч)**

Содержание тем учебного курса «Геометрия» 9 класс.

УМК по учебнику Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева

1-3. Повторение, векторы и метод координат (24 ч)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

4. Соотношения между сторонами и углами треугольника (14 ч)

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах. Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

5. Длина окружности и площадь круга (12 ч)

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2ге-угольника, если дан правильный п-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь —

к площади круга, ограниченного окружностью.

<u>6.Движения (10 ч)</u>

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений. Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

8. Об аксиомах геометрии (1 ч)

Беседа об аксиомах геометрии.

Основная цель – дать более глубокое представление о системе аксиом планиметрии и аксиоматическом метоле.

Различные системы аксиом, различные способы введения понятия равенства фигур.

9. Повторение. Решение задач (7 ч)

Содержание тем учебного курса «Геометрия» 10 класс.

УМК по учебнику Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева

Содержание

Введение (5 час).

Предмет стереометрии. Основные понятия стереометрии (точка, прямая, плоскость, пространство) и аксиомы стереометрии. Первые следствия из аксиом.

Параллельность прямых и плоскостей (19 часов, из них 2 часа контрольные работы, 1 час зачет).

Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве. Перпендикулярность прямых.

Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур.

Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.

Перпендикулярность прямых и плоскостей (20 час, из них 1 час контрольная работа, 1 час зачет).

Перпендикулярность прямой и плоскости, признаки и свойства. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Площадь ортогональной проекции многоугольника.

Многогранники (12 часов, из них 1 час контрольная работа, 1 час зачет).

Понятие многогранника, вершины, ребра, грани многогранника. Развертка. Многогранные углы Выпуклые многогранники. Теорема Эйлера.

Призма, ее основание, боковые ребра, высота, боковая и полная поверхности.

Прямая и наклонная призма. Правильная призма.

Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая и зеркальная). Примеры симметрий в окружающем мире.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Векторы в пространстве (6 часов, из них 1 час зачет).

Понятие вектора в пространстве. Модуль вектора. Равенство векторов. Сложение и вычитание векторов. Коллинеарные векторы. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение вектора по трем некомпланарным векторам.

Повторение курса геометрии 10 класса (6 часов)

Содержание тем учебного курса «Геометрия» 11 класс.

УМК по учебнику Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева **Повторение (2 часа)**

Повторить основные вопросы курса 10 класса. Понятие двугранного угла. Угол между прямыми в пространстве, угол между прямой и плоскостью, угол между плоскостями. Площади поверхностей геометрических тел.

Метод координат в пространстве (15 часов)

Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами векторов и координатами точек. Простейшие задачи в координатах. Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями. Уравнение плоскости. Движения. Центральная симметрия. Осевая симметрия. Зеркальная симметрия. Параллельный перенос. Преобразование подобия.

Знать: определения прямоугольной системы координат в пространстве. координаты вектора, угла между двумя векторами, скалярного произведения, центральной, осевой, зеркальной симметрии, параллельного переноса.

Уметь: вычислять координаты вектора, решать простейшие задачи в координатах, вычислять углы между прямыми и плоскостями, записывать уравнение плоскости.

Цилиндр, конус и шар (17 часов)

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы. Взаимное расположение сферы и прямой. Сфера, вписанная в цилиндрическую поверхность. Сфера, вписанная в коническую поверхность.

Знать: определение цилиндра, конуса, усеченного конуса, сферы и шара, касательной плоскости, вписанного многогранника, формулы площади поверхности цилиндра, конуса, сферы.

Уметь: вычислять площади поверхности цилиндра, конуса, сферы, изображать сечения тел вращения.

Объемы тел (22 часа)

Понятие объема. Объем прямоугольного параллелепипеда. Объем прямой призмы. Объем цилиндра. Вычисление объемов тел с помощью определенного интеграла. Объем наклонной призмы. Объем пирамиды. Объем конуса. Объем шара. Объем шарового сегмента, шарового слоя и шарового сектора. Площадь сферы.

Знать: определение объема, формулы для вычисления объемов многогранников и тел вращения.

Уметь: вычислять объемы многогранников и тел вращения.

Повторение (12 часов)

- 1. Аксиомы стереометрии и их следствия. Параллельность прямых, прямой и плоскости. Скрещивающиеся прямые. Параллельность плоскостей.
- 2. Перпендикулярность прямой и плоскости. Теорема о трех перпендикулярах. Угол между прямой и плоскостью.
 - 3. Двугранный угол. Перпендикулярность плоскостей.

- 4. Многогранники: параллелепипед, призма, пирамида, площади их поверхностей.
- 5. Векторы в пространстве. Действия над векторами. Скалярное произведение векторов.
 - 6. Цилиндр, конус и шар, площади их поверхностей
 - 7. Объемы тел. Решение стереометрических задач